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Abstract

A two-dimensional numerical study on the heat transfer from small cylinders in near-wall shear flow was carried out

taking the conjugated heat conduction in the solid wall into account. The finite volume flow solver (FASTEST-2D)

enhanced with multigrid acceleration and the local grid refinement technique was used to achieve efficient computations

and accurate numerical results. The effects of the wall thermal conductivity ð10�2
6 k�w 6 104Þ on the heat transfer from a

cylinder under different flow conditions (the shear parameter G� ¼ 0:0033, 0.01, 0.1 and the cylinder Reynolds number

10�3
6ReD 6 1:0Þ were investigated in detail. The cylinder to wall distance was varied in the range 0:16 Y þ

6 10 to

cover the influence range of the wall effect. It was found that the wall material even of low conductivity, such as mirror

glass and Perspex, still has a dominant influence on the heat transfer rate from the cylinder in the vicinity of a wall.

However, when Y þ is above 5.0, the wall effect becomes minor and the average heat loss rate of the cylinder depends

only on the cylinder Reynolds number while the shear parameter influences the local Nusselt number distribution.

Different heat exchange processes of the fluid and the solid wall were found between materials of high and low con-

ductivities. Based on the numerical results and with the help of dimensional analysis, the physical mechanism of the hot-

wire near-wall correction was further revealed. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Heat transfer from a circular cylinder in cross-flow

has been intensively investigated. The earlier exper-

imental and analytical results on the effects of a variety

of influencing factors have been reviewed by �ZZukauskas
and �ZZiug�zzd [1]. Recently, numerical studies have been

increasingly focused on this topic. However, most of the

available studies are limited to the case where the cyl-

inder is located in a uniform cross-flow. Despite its basic

importance in both engineering and science, the problem

of a cylinder in shear flows has received relatively little

attention. Kwon et al. [2] studied the free shear effect on

the flow characteristics over a cylinder for a range of

Reynolds numbers from 600 to 1600. Sung et al. [3] in-

vestigated the free shear effect on the mass transfer from

a cylinder for higher Reynolds numbers of 24,000 and

48,000. They found that the overall mass transfer rate

depends almost exclusively on the Reynolds number

while the distribution of the local mass transfer rate on

the cylinder surface is characterized by the shear rate

without a strong dependence on the Reynolds number.

Goldstein and Karni [4] examined the effect of a wall

boundary layer on the local mass transfer from a cyl-

inder. However, almost no study has dealt with the heat

transfer from a cylinder in wall-bounded shear flow ex-

cept for investigations on the hot-wire near-wall cor-

rection. Most of them are experimental, as reviewed by

Bruun [5]. The experimental data reflect only the total

effect of all possible influencing factors and additionally

show a high degree of scatter, which makes it difficult to

understand the observed phenomena. Nowadays, nu-

merical analysis is a powerful tool for overcoming this
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experimental disadvantage. The few published numeri-

cal studies were made by Bhatia et al. [6], Chew et al. [7]

and Lange et al. [8] and contradicted each other and also

the experimental data in cases of walls of low conduc-

tivity. As a result, some confusion regarding the heat

transfer behavior of a hot-wire in shear flow close to

poorly conducting walls remained for many years. The

problem was successfully solved by a recent numerical

investigation by Durst et al. [9], who for the first time

took the conjugated heat conduction in the solid wall

into account. Actually, all these studies were specific for

hot-wire wall corrections, and the effects of wall thermal

conductivity, shear rate ðG ¼ oU=oy ¼ UD=Y Þ and

Reynolds number on the characteristics of the local heat

transfer of a cylinder in a near-wall shear flow were not

studied. The heat exchange between the fluid and the

solid wall was also not analyzed.

Knowledge of these effects and detailed information

on the local heat transfer rate at the cylinder surface and

on the heat exchange between the fluid and the solid wall

are useful not only for hot-wire near-wall measurements

but also for precise micro-machinery designs. In such

flow situations, the cylinder Reynolds number is typi-

cally in the creeping range, so no flow separation occurs

around the cylinder. In addition, the flow and heat

transfer remain steady. Despite this simplicity, the

overall problem is still complex. The cylinder is generally

of micrometer size and may be only a few diameters

away from the wall. As a result, the convective heat

transfer of the cylinder will depend significantly on the

coupled heat conduction in the solid wall, as was con-

firmed by Durst et al. [9] and relatedly by Lacroix and

Joyeux [10]. Therefore, it is of interest not only to

understand under what conditions the cylinder will be-

come subject to the influence of wall conduction, but

also further to examine how this influence will affect the

heat transfer characteristics from the cylinder under

different flow conditions (ReD ¼ UD � D=m1 and G) and
to understand how the flow region and the solid wall are

coupled.

In the present work, a heated cylinder in a linear wall

shear flow of cylinder Reynolds number ranging from

10�3 to 1.0 was investigated numerically. The physical

model for this problem is described in Section 2. Con-

sidering that the numerical grid and the local resolution

in the region close to the cylinder are the key points to

guarantee numerical accuracy, a well tested local-block

refinement algorithm [11] was used. The numerical de-

tails are provided in Section 3. The Reynolds number

was systematically varied to obtain a non-dimensional

distance Y þ ¼ YUs=m increasing from 0.1 to 10 to cover

the influence range of the wall conduction. Wall mate-

rials of both low and high conductivities under different

flow conditions (ReD and G) were investigated. Detailed

information was obtained for the local heat transfer rate

from the cylinder. The effects of wall conductivity, shear

rate and Reynolds number are discussed in Section 4.

The interaction between the ‘‘temperature influence re-

gion’’ of a hot-wire and the solid wall and the heat ex-

change between the fluid and the wall material were

analyzed. This leads to a better understanding of the

physical mechanism for the required hot-wire velocity

Nomenclature

cp specific heat at constant pressure

CU velocity correction factor

D cylinder diameter

Ec Eckert number

g gravitational acceleration

G shear rate

Gr Grashof number

H thickness of the solid wall

k thermal conductivity

Nu Nusselt number

P pressure

Pr Prandtl number

Re Reynolds number

ReD cylinder Reynolds number

T temperature

Us friction velocity

U ; V Cartesian velocity components

x; y Cartesian coordinates

Y cylinder to wall distance

Greek symbols

a heat diffusion coefficient

b volumetric thermal coefficient expansion

l dynamic viscosity

m kinematic viscosity

q fluid density

s temperature loading

sw wall shear stress

U viscous dissipation function

Indices

0 actual value

c characteristic quantities

D at the cylinder location

1 free-stream

f flow region

num numerical value

w solid wall

W at the cylinder surface

� non-dimensional quantity

+ in wall units
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correction close to different wall materials under differ-

ent flow conditions.

2. Physical model and boundary conditions

A two-dimensional steady laminar problem in-

cluding conjugated heat transfer in the solid wall was

considered. The physical model for the present prob-

lem is illustrated schematically in Fig. 1. An infinite

circular cylinder of diameter D ¼ 5 lm and tempera-

ture TW ¼ 100 �C was mounted in a linear wall-

bounded shear flow. The fluid considered was air at

an inflow (ambient) temperature of T1 ¼ 20 �C. The

cylinder to wall distance was in the range 106

ðY =DÞ6 300. For each distance, several shear rates G

were applied, based on which the friction velocity

varied in the range 0:0066Us 6 0:307 m/s. The Rey-

nolds numbers ReD based on the cylinder diameter D

and the inflow velocity UD at the height of the cyl-

inder location are in the range 10�3–1:0. The resulting

non-dimensional wall distances ðY þ ¼ ½Y Us
=mÞ cover a
range from 0.1 to 10. The thickness of the plate is

H ¼ 300D or 1.5 mm. Materials of different thermal

conductivities (aluminum, k�w ¼ kw=k1 ¼ 9186; glass,

k�w ¼ 29:6; Perspex, k�w ¼ 7:2; air, k�w ¼ 1:0 and two

artificial materials with k�w ¼ 0:1 and 0.01) were in-

vestigated. The plate is adiabatic at the bottom surface

while the heat conduction in the plate is coupled to

the flow region by means of temperature continuity

and heat flux conservation at the interface (top sur-

face). Both lateral ends of the plate were set to take a

constant ambient temperature. No-slip flow condi-

tions, i.e., U ¼ 0 and V ¼ 0, were defined on all wall

boundaries. The flow on the upper boundary of the

integration domain was assumed to be undisturbed

and a zero gradient boundary condition for a fully

developed flow was assigned at the outflow boundary.

As indicated in Fig. 1, the computational domain in

the y-direction was accordingly extended between

1000D and 3000D (more than 20 wall units) from the

wall based on extensive numerical tests. A domain size

of not less than 6000D upstream and 10000D down-

stream of the cylinder were chosen to eliminate the

influence of the boundary conditions.

3. Numerical details

3.1. Mathematical model

For steady flow and heat transfer around a two-di-

mensional cylinder, the non-dimensional governing

equations expressing the conservation of mass, mo-

mentum and energy for an incompressible fluid with

temperature-dependent fluid properties are, in Cartesian

coordinates, as follows:

oðq�U �
i Þ

ox�i
¼ 0; ð1Þ

oðq�U �
i U

�
j Þ

ox�i
¼ � oP �

ox�j
þ 1

Re
o

ox�i
l� oU �

j

ox�i

 "
þ oU �

i

ox�j

!#

þ Gr
Re2

T �; ð2Þ

c�p
oðq�U �

i T
�Þ

ox�i
¼ 1

RePr
o

ox�i
k�

oT �

ox�i

� �
þ Ec
Re

U�; ð3Þ

Fig. 1. Schematic diagram of the physical model for a heated cylinder in a near-wall shear flow.
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where i; j ¼ 1; 2 and U� is the normalized viscous dissi-

pation function, given by

U� ¼ l� oU �
i

ox�j

 
þ
oU �

j

ox�i

!
oU �

i

ox�j
: ð4Þ

Considering the characteristics of the wall-bounded

shear flow, the velocity components and coordinates are

normalized by the friction velocity Uc ¼ Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw=q1

p
and the molecular diffusion length lc ¼ m1=Us, respec-

tively. q�, l�, k� and c�p are dimensionless properties

(density, viscosity, thermal conductivity and specific

heat at constant pressure, respectively) normalized by

the corresponding values at the inflow temperature T1.
T � ¼ ðT � T1Þ=ðTW � T1Þ is the dimensionless temper-

ature normalised by TW � T1. The non-dimensional

parameters appearing in the governing equations are as

follows:

Eckert number : Ec ¼ U 2
c

cp1ðTW � T1Þ ;

Grashof number : Gr ¼ l3cgbq2
1ðTW � T1Þ

l2
1

;

Prandtl number : Pr ¼ l1cp1
k1

;

Reynolds number : Re ¼ Uclc
m1

¼ 1;

where g is the gravitational acceleration, b the coefficient

of volumetric thermal expansion.

Applied to the heat conduction in the solid wall, the

simplified energy equation reduces to a Laplacian

equation. Thus only the dimensionless thermal conduc-

tivity of the wall material k�w and the wall thickness H=D
remain as relevant parameters.

In the present study, the temperature dependence of

the transport properties of the fluid were taken into

account. q�, l�, k� and c�p are treated as quadratic

polynomial functions of T �, whose coefficients are in-

terpolated based on the VDI-W€aarmeatlas [12]. The in-

vestigations were restricted to cases where continuum

and incompressibility of the fluid can be assumed.

Natural convection and viscous dissipation effects are

small owing to the dimensions and temperatures in-

volved in the present investigation. Therefore, the last

terms in Eqs. (2) and (3) were neglected (see, e.g.

[13,14]).

3.2. Numerical method and computational grids

For the spatial discretization of Eqs. (1)–(3), a finite

volume method with a colocated arrangement of the

variables was employed, as described by Demird�zzi�cc and

Peri�cc [15]. The convection and diffusion contributions to

the fluxes were evaluated using a central differencing

scheme. In order to ensure mass conservation, a pres-

sure-correction equation was solved following the

SIMPLE algorithm proposed by Patankar and Spalding

[16]. Details of the discretization and the pressure–

velocity coupling can be found elsewhere [15,17]. A non-

linear multigrid scheme was employed for convergence

acceleration (see, e.g. [18]). Convergence was assumed to

be satisfied when the maximum sum of the normalized

absolute residuals in all equations was reduced by six

orders of magnitude.

In order to improve the accuracy of the numerical

results without a decrease in efficiency and to optimize

the utilization of the available computational resources,

a local grid refinement technique was employed. For the

local refinement procedure, the computational domain

was divided into blocks and each block was discretized

with a different mesh density to retain a structured grid

[11,13,14]. More than 500 grid points were applied on

the finest grid level at the cylinder surface to ensure a

high accuracy of the results. In total, about 105 grid

points on the fifth multigrid level were used in the

computations. As an example, a zoomed view of the grid

and the core region on the third multigrid level for one

case of Y =D ¼ 100 are shown in Fig. 2.

The numerical code was verified by extensive pre-

dictions of the flow and heat transfer around a heated

two-dimensional cylinder under free-stream conditions

in the ReD range 10�4–102 [13,14] and the recent suc-

cessful studies of hot-wire near-wall corrections [8,9].

The combination of high efficiency with high accuracy

provided by the local-block refinement is essential to the

realization of this investigation.

Fig. 2. Example of computational grid ðY =D ¼ 100Þ and zoom

of the locally refined region (both at the third of a total of five

multigrid levels).
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4. Results and discussion

4.1. Definitions and analysis

In order to describe the local heat transfer rate of

the cylinder, the local Nusselt number distribution

NuðxÞ on the cylinder surface is introduced. The defi-

nition is

NuðxÞ ¼ ðo½T ðxÞ � T1
=orÞjW
ðTW � T1Þ=D ; ð5Þ

where r is the radial component of a cylindrical co-

ordinate system with the same origin as the Cartesian

coordinate system as sketched in Fig. 1 and x is the

x-component of the Cartesian coordinate system. The

subscript W denotes the cylinder surface where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ D=2 is satisfied. According to the defi-

nition of the dimensionless quantities in Section 3, Eq.

(5) can be rewritten as

Nu
x
D

	 

¼ � oT �ðx=DÞ

oðr=DÞ

����
W

: ð6Þ

The mean Nusselt number Nu can be averaged from

Nuðx=DÞ over the cylinder surface.

Without considering the heat conduction in the solid

wall, the relevant quantities to formulate the flow and

heat transfer in the flow region are UD, Y, D, TW, T1, cp,
k, q, l, b and g. For a steady-state coupling with the

solid wall, only the dimensionless thermal conductivity

of the wall material k�w and the wall thickness H=D re-

main as additional relevant parameters (see Section 3).

Therefore, a dimensional analysis yields the following

general dependence of Nu on the parameters

Nu ¼ f ReD;
Y
D
;
TW
T1

; Pr;Gr;Ec; k�w;H=D
� �

: ð7Þ

As mentioned in Section 3, the influence of free con-

vection and viscous heating is minor under the flow

conditions considered here, hence the dependence on

Gr and Ec can be neglected. Therefore, Eq. (7) is

simplified

Nu ¼ f ReD;
Y
D
;
TW
T1

; Pr; k�w;H=D
� �

; ð8Þ

where the shear effect ðG ¼ oU=oy ¼ UD=Y Þ is implicitly

included. For an explicit analysis, we introduce the

convection and diffusion time-scales:

tconv ¼
D
UD

; tdiff ¼
D2

m
:

Hence two non-dimensional shear parameters can be

defined:

G�
1 ¼ G; tconv ¼

UD

Y
D
UD

¼ Y
D

� ��1

; ð9Þ

G�
2 ¼ G; tdiff ¼

UD

Y
D2

m
¼ ReD

Y
D

� ��1

: ð10Þ

If a dimensionless diameter defined as Dþ ¼ DUs=m is

introduced, then combinations of ReD and Y =D yield the

following relationships:

ReD
Y
D
¼ Y þ2; ReD

Y
D

� ��1

¼ G�
2 ¼ Dþ2:

And obviously we have

ReD ¼ tdiff
tconv

¼ Y þDþ:

Based on the above analysis, it is clear that the influence

of the cylinder diameter Dþ on the heat transfer often

mentioned in the literature on hot-wire near-wall cor-

rection is equivalent to the shear effect G�
2. Physically, it

reflects the ratio of the diffusion time tdiff to the time of

convection needed from the cylinder to the wall Y =UD.

Additionally, the analysis indicates that any pair of these

dimensionless parameters (ReD; Y =D;G�
1;G

�
2; Y

þ and Dþ)

is suitable for characterizing the flow condition. There-

fore, a useful expression can be obtained for the hot-wire

near-wall measurement

Nu ¼ f Y þ;Dþ;
TW
T1

; Pr; k�w;H=D
� �

: ð11Þ

In the present study, Pr � 0:72, TW ½K
=T1 ½K
 ¼ 1:27
and H=D ¼ 300 were not varied. We concentrate on the

influence of k�w in combination with that of the flow

condition parameters. First, the k�w effect on the local

heat transfer rate of a cylinder at different Y þ will be

discussed in detail in Section 4.2. In the subsequent

subsection, the shear effect G�
2, i.e., the influence of Dþ

and ReD in the range beyond the wall effect, will be

studied. Finally, we apply the obtained results to the

hot-wire near-wall correction and discuss the physical

mechanism.

4.2. Effect of wall thermal conductivity

To make a detailed examination of the wall effect on

the heat transfer characteristics of a cylinder, the local

Nusselt number distributions Nuðx=DÞ on the cylinder

surface are displayed in this section for different wall

materials and different cylinder to wall distances. In all

figures, the lower side surface facing to the wall is dis-

tinguished from the upper side by broken lines. First, we

check the influence of the wall thermal conductivity

(Fig. 3) in the case of a cylinder located at a very small

distance from the wall (Y þ ¼ 0:2, resulting from ReD ¼
0:004 and G�

1 ¼ 0:1), where the wall effect is expected to

be very strong. The result for a cylinder in a uniform free

flow with the same Reynolds number [19] is also dis-

played for comparison. Despite the same flow condition,
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distinct Nuðx=DÞ distributions can be observed in Fig. 3

corresponding to walls of different thermal conductivi-

ties. The heat loss from the cylinder is significantly en-

hanced both in case of a wall of aluminum ðk�w ¼ 9186Þ
and a wall of mirror glass ðk�w ¼ 29:6Þ. Moreover, the

local heat transfer rate on the lower side of the cylinder

is found to surpass that on the upper side for both wall

materials. That indicates that the wall conduction effect

is still significant when a cylinder is located in the

proximity of poorly conducting walls (e.g., mirror glass,

k�w ¼ 29:6). On the other hand, the heat transfer rate on

the lower side of the cylinder is smaller than that on the

upper side in cases of artificial walls k�w 6 1). The dif-

ference in the heat transfer rate between the upper and

lower side of the cylinder increases with decreasing

thermal conductivity of the wall material. This again

shows the important effect of the wall thermal conduc-

tivity. However, it is interesting that the heat loss rate of

the cylinder for k�w ¼ 1 (a wall with the same conduc-

tivity as the fluid) is predicted to be much higher than

that in the free stream case. This phenomenon is difficult

to understand if we exclude the influence of the flow

distortion due to the presence of a wall close to a cyl-

inder. A further investigation on this effect is on-go-

ing.

The above results are very useful for clarifying the

existing confusion on the physical cause of the heat

transfer modification from a hot-wire in the vicinity of

walls of low conductivity (e.g., mirror glass). Chew et al.

[7] suggested the flow distortion due to the presence of a

wall as the main reason whereas Lange et al. [8] pro-

posed wall conduction. The present results for mirror

glass provide explicit evidence for the latter interpreta-

tion; however, the role of the flow distortion might not

be minor according to the results for walls of k�w ¼ 1.

The overshoot of Nuðx=DÞ on the lower side decreases

with increasing Y þ, reflecting a decreasing influence of

the wall conduction, as shown in Fig. 4 for an aluminum

wall ðk�w ¼ 9186Þ and a mirror glass wall ðk�w ¼ 29:6Þ for
comparison. In the case of a mirror glass wall, the

overshoot reduces to zero at Y þ ¼ 1:4 (not shown here)

and a larger heat loss Nuðx=DÞ occurs on the upper side

of the cylinder as Y þ increases further. In comparison,

the influence of an aluminum wall is obviously stronger

than that of a mirror glass wall under the same flow

conditions. Hence the turning point of the overshoot is

expected to be at a larger distance Y þ � 1:9 (not shown

here). The wall effect becomes negligible at Y þ � Oð10Þ

Fig. 3. Local Nusselt number Nuðx=DÞ of a cylinder at Y þ ¼ 0:2

(ReD ¼ 0:004 and G�
1 ¼ 0:1) from walls of different conductivi-

ties.

Fig. 4. Influence of an aluminum wall (k�w ¼ 9186, left) and a glass wall (k�w ¼ 29:6, right) on the local Nusselt number Nuðx=DÞ of a
cylinder close to these walls.
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for all materials, e.g., a maximum difference in Nuðx=DÞ
of less than 1% is found between the case of an alumi-

num wall and a mirror glass wall at Y þ ¼ 6:3: For both
cases, the averaged Nuðx=DÞ value of both sides of the

cylinder is almost the same as the free-stream case. This

indicates a negligible effect of wall conduction.

The dependence of the heat loss rate of the cylinder

on the thermal conductivity of the wall material k�w and

the cylinder-wall distance Y þ can be well understood by

checking the field information of temperature isolines

around the cylinder and in the solid materials. Figs. 5

and 6 display the temperature distributions for the case

of an aluminum and a mirror glass wall for Y þ ¼ 0:63
and Y þ ¼ 10, respectively. As shown in Fig. 5, the

temperature distribution in the region of interest is

strongly influenced by the heat conduction in the solid

wall when Y þ ¼ 0:63. Furthermore, much higher tem-

perature gradients are caused around the cylinder by the

higher conductivity of an aluminum wall compared with

a mirror glass wall. In comparison, the temperature

distributions around the cylinder at Y þ ¼ 10 are found

to be similar for the two wall materials (Fig. 6).

4.3. Influence of Reynolds number and shear rate

According to the analysis in Section 4.1, the heat

transfer of a cylinder in this investigation depends on

two additional flow parameters, ReD and the shear

parameter G�
1 or G�

2. In order to display the Reynolds

number effect on the local heat transfer rate from the

cylinder, the Nuðx=DÞ distributions for the case of a

constant shear parameter ðG�
1 ¼ 0:01Þ and an alumi-

num wall with various ReD are presented in Fig. 7,

together with the corresponding results for a cylinder in

a free uniform flow ðG�
1 ¼ 0Þ from Lange [19] for

comparison. Without considering the natural convec-

tion effect, the flow and heat transfer in the free-stream

case are symmetrical with respect to the x-axis at such

small values of ReD as considered here. Hence the

values of Nuðx=DÞ on the upper side of the cylinder are

expected to coincide with those on the lower side.

Moreover, a linear distribution, Nuðx=DÞ ¼ NuðReDÞ�
aðReDÞ � ðx=DÞ, is found in Fig. 7 (right). Here, NuðReDÞ
is the average value and aðReDÞ is the gradient with

respect to x=D. Owing to the effect of the shear rate

and the wall conduction, the problem becomes non-

symmetrical and, as a result, a ‘‘elliptic’’-shaped

Nuðx=DÞ distribution is found for the case of a cylinder

close to an aluminum wall (Fig. 7, left). However, the

‘‘long-axis’’ of the ellipse is almost parallel to the linear

distribution in the free-stream case for the same value

of ReDaðReDÞ. aðReDÞ � 0 is observed for ReD ¼ 0:004.
This indicates that the diffusive heat transfer is domi-

nant in cases of very low Reynolds numbers. The

Fig. 5. Temperature isolines (�C) around the cylinder and in the wall at Y þ ¼ 0:63 resulting from ReD ¼ 0:004, Y =D ¼ 100. Case (a):

an aluminum wall, k�w ¼ 9186 (left). Case (b): a mirror glass wall, k�w ¼ 29:6 (right).

Fig. 6. Temperature isolines (�C) around the cylinder and in the wall at Y þ ¼ 10 resulting from ReD ¼ 1, Y =D ¼ 100. Case (a): an

aluminum wall, k�w ¼ 9186 (left). Case (b): a mirror glass wall, k�w ¼ 29:6 (right).
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gradient a increases with increasing ReD, which physi-

cally reflects an increased contribution from the con-

vective heat transfer.

The long-axis of the Nuðx=DÞ ellipse represents the

average values of the upper and lower sides. A careful

examination of Fig. 7 shows that the linear Nuðx=DÞ
distribution in uniform flow ðG�

1 ¼ 0Þ coincides with the

corresponding long-axis ðG�
1 ¼ 0:01Þ at Y þ ¼ 6:3

(Y =D ¼ 100, ReD ¼ 0:4) and Y þ ¼ 10 (Y =D ¼ 100,

ReD ¼ 1), where the influence of the wall effect is negli-

gible. This suggests that, similar to the case of a uniform

flow, the average heat loss rate Nu of a cylinder in a

shear flow and the gradient a of its distribution are

principally determined by the cylinder Reynolds number

ReD, and the effect of the shear rate (G�
1 or G

�
2) is minor.

However, the heat transfer difference between the

upper and lower sides of a cylinder,

DNu
x
D

	 
.
Nu ¼ Nu

x
D

	 

upper



� Nu

x
D

	 

lower

��
Nu

is mainly characterized by the shear rate, as demon-

strated in Fig. 8 for three cases beyond the influence

range of the wall conduction. As can be expected,

DNuðx=DÞ=Nu increases with increasing G�
1 or G�

2 at the

same Reynolds number. However, it is worth noting

that with the same value of G�
1 ¼ 0:01, the case with a

larger value of G�
2 ¼ ReD�G�

1 corresponds to a higher

DNuðx=DÞ=Nu. Therefore, the relative heat transfer dif-

ference between the upper and lower sides of a cylinder

is better characterized by the shear parameter G�
2. The

reason is that G�
1 ¼ D=Y contains only the geometric

configuration whereas the flow information ReD is

already included in G�
2.

4.4. Implications for hot-wire near-wall correction

It is clear that a hot-wire measures a larger apparent

velocity Uappa than the real value U0 when it is applied to

flow fields close to highly conducting walls, e.g., alumi-

num. Hence a positive velocity correction DU ¼
ðUappa � U0Þ is needed. In this case, a general under-

standing of the mechanism was reached based on the

available literature. The numerical results of the authors

[9] for an aluminum wall ðk�w ¼ 9186Þ and of Lange et al.

[8] for a perfectly conducting wall ðk�w ¼ 1Þ were found
to agree well with the experimental data in the literature.

Fig. 8. Shear effect on the local Nusselt number of a cylinder,

DNuðx=DÞ=Nu ¼ ½Nuðx=DÞupper � Nuðx=DÞlower
=Nu.

Fig. 7. Influence of the Reynolds number ReD on the local Nusselt number Nuðx=DÞ of a cylinder in shear flow close to an aluminum

wall ðk�w ¼ 9186Þ at G�
1 ¼ 0:01 (left) and in free uniform flow from [19] (right).
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However, as mentioned above, contradictory results

(small positive correction, no correction and negative

correction) and different understandings [7,8] exist in the

literature for poorly conducting wall materials such as

mirror glass or Perspex. Based on the present study, the

physical problem is better understood. For convenience

of the explanation, we display again the part of the

numerically predicted hot-wire velocity corrections close

to poorly conducting walls (mirror glass, k�w ¼ 29:6, and
Perspex, k�w ¼ 7:2) in Fig. 9. The complete numerical

correction results including cases of highly conducting

walls and artificial walls ðk�w < 1Þ can be found in Durst

et al. [9].

The results in Fig. 9 are presented in the form of the

correction factor CU ¼ U0=Uappa. Under this definition,

a positive velocity correction observed in cases of highly

conducting walls corresponds to CU < 1. Region (b) of

Fig. 9, where CU > 1 (DU < 0, negative correction

needed) is observed, is worth special noting. This

phenomenon was predicted for the first time by Lange

et al. [8] with an adiabatic wall ðk�w ¼ 0Þ (included in

Fig. 9), but it is not clear whether this phenomenon

occur in the cases of realistic wall materials. In fact, it

can also be recognized in the experimental data of Lig-

rani and Bradshaw [20] with a mirror glass wall and

Chew et al. [21] with a Plexiglas wall, as shown in Fig. 9.

Based on the detailed numerical results in Sections 4.2

and 4.3, the effect of heat conduction in the solid wall on

the hot-wire measurement under different flow condi-

tions and close to different wall materials can be better

understood. With the help of further analysis in the

following section, the present predicted negative velocity

correction CU > 1 for poorly conducting materials can

be confirmed and the physical mechanism of the differ-

ent velocity corrections required for hot-wire measure-

ments corresponding to different situations can be

revealed.

4.5. A physical explanation of hot-wire near-wall correc-

tions

The field information on temperature isolines at dif-

ferent Y þ (Figs. 5 and 6) clearly suggests the important

influence of the interaction of the temperature influence

region of a hot-wire and the wall (Fig. 10) and of the

heat exchange process between the fluid and the solid

wall on the heat loss rate from a wire. First, we make a

simplified dimensional analysis to explain idea of the

temperature influence region of a wire. Assuming that

the heat transfer around a hot-wire in a free uniform

flow can be described by two independent processes,

diffusion (see Eq. (14)) and uniform convection, we have

the following relationships:

diffusion : x2 þ y2 ¼ l2c ;

convection : x0 ¼ xþ U1tc; y0 ¼ y;

where tc ¼ l2c=ac as defined in Eq. (16) and lc; tc are the
characteristic length and time of the diffusion process,

respectively. A combination of the two processes to-

gether with a simple derivation yields a parabolic ex-

pression for the ‘‘temperature influence region’’ of the

wire

x0
D
þ 1

4PrReD
¼ PrReD

y0
D

	 
2
: ð12Þ

Fig. 9. Comparison of numerical and experimental values of

the velocity correction factor CU in cases of walls of low con-

ductivity (mirror glass, Perspex).

Fig. 10. Schematic temperature influence region of a hot-wire

and the heat exchange process between the fluid and the solid

wall at various wire to wall distance Y þ: (a) CU ¼ 1:0; (b)

CU > 1:0; (c) CU < 1:0.
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Applying Eq. (12) to the hot-wire near-wall measure-

ment and neglecting the shear effect, we obtain the in-

tersection point ðX=D; Y =DÞ of the parabolic curve with
the fluid–wall interface

X
D

¼ Pr
Y
D
ðY þÞ2 � 1

4PrReD
: ð13Þ

Considering the relationship Y þ2 ¼ ReD�ðY =DÞ obtained
in Section 4.1, we obtain from Eq. (13) that for a fixed

Y =D, the intersecting location ðX=DÞ moves in the

downstream direction as ReD (or Y þ) increases.

The above analysis is simplified because the shear

effect and the coupled heat conduction in the solid wall

have not been taken into account. However, this sim-

plification is sufficient to give us a qualitative idea of the

interaction between the ‘‘temperature influence region’’

and the solid wall, which is one of the essential parts of

the mechanism responsible for the different velocity

correction values required for a hot-wire corresponding

to different wire-to-wall distances Y þ.

The numerical results for the heat exchange between

the fluid and the solid wall at the interface k�ðoT=oyÞ are
displayed in Fig. 11 for the cases of an aluminum wall

ðk�w ¼ 9186Þ and a mirror glass wall ðk�w ¼ 29:6Þ for

various values of Y þ. According to the definition, posi-

tive values mean the heat flux from the fluid into the

solid wall and negative fluxes are the heat fed back into

the fluid from the solid wall. The heat feedback in the

case of an aluminum wall is observed to be very weak for

all Y þ whereas significant heat flux fed back into the

fluid is found from a mirror glass wall. The influence of

the material properties on the heat feedback can be

understood by a dimensional analysis of the simplified

unsteady heat conduction equation in the solid wall

qcp
oT
ot

¼ oðkðoT=oxiÞÞ
oxi

: ð14Þ

Introducing the following normalization quantities, Eq.

(14) can be rewritten as

q ¼ qcq
�; cp ¼ cpcc

�
p; k ¼ kck�; T ¼ TcT �;

t ¼ tct�; xi ¼ lcx�i ;

q�c�p
oT �

ot�
¼

o k�ðoT �=ox�i Þ
� �

ox�i

kctc
l2cqccpc

� �
: ð15Þ

Hence we obtain the relationship between the time-scale

tc and the wall properties qc, cpc and kc:

tc ¼
l2c
ac

; where ac ¼
kc

cpcqc

: ð16Þ

Defining a�
c ¼ ðacÞw=ðacÞair, we have a�

c ¼ 4:53 for alu-

minum, a�
c ¼ 0:0164 for mirror glass and a�

c ¼ 0:00504
for Perspex. Therefore, the heat conduction time-scale

ratio t�c ¼ ðtcÞw=ðtcÞair is about 1:5 for aluminum whereas

it is about 61 for mirror glass and about 198 for Perspex.

This means, that the temperature conduction in an

aluminum wall is about five times as fast as in the fluid,

hence the heat feedback from an aluminum wall is very

weak, as observed in Fig. 11. On the other hand, in the

poorly conducting wall materials such as mirror glass,

the temperature conduction is much slower than in the

fluid. As a result, the heat feedback from the solid wall is

much stronger.

The heat exchange process between the fluid and the

solid wall can have a two-way (enhancing and reducing)

effect on the heat loss of a wire. Since both highly and

poorly conducting materials have k�w 
 1, the heat loss

from a wire can be enhanced by the heat conduction in

Fig. 11. Heat exchange (k�ðoT=oyÞ (�C/m)) at the fluid–wall interface in the cases of an aluminum wall (k�w ¼ 9186, left) and a mirror

glass wall (k�w ¼ 29:6, right); the heat flux fed back into the fluid is defined as being negative and a positive value means the heat flux

from the fluid into the solid wall.
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the solid wall. However, the heat feedback in the up-

stream direction from the solid wall can also reduce the

heat transfer rate from the wire in the case of poorly

conducting walls. This heat feedback is exactly the main

physical cause of the negative velocity corrections

ðCU > 1Þ predicted in the numerical simulations for

poorly conducting wall materials.

Based on the above analysis, the different velocity

corrections corresponding to different Y þ can now be

explained both for highly and poorly conducting ma-

terials.

When a hot-wire whose temperature is higher than

that of the fluid is applied to near-wall measurements,

heat transfer from the fluid into the wall material occurs

in the interaction region of the ‘‘temperature influence

region’’ of the hot-wire and the solid wall. Owing to the

heat conduction in the solid wall, part of the heat flux is

fed back into the fluid at the fluid–wall interface (both

upstream and downstream of the wire location) where

the fluid temperature is lower than that in the solid wall.

In case (a) in Fig. 10, owing to the strong convection

corresponding to a relatively high ReD or Y þ, the

‘‘temperature influence region’’ is very narrow and the

‘‘temperature influence region’’–wall interaction occurs

far downstream from the wire location. The heat ex-

change between the fluid and the solid wall has no evi-

dent effect on the flow and heat transfer in the core

region around the hot-wire. As a result, no velocity

correction is required, i.e., CU � 1:0, regardless of the

wall material. The temperature isolines in Fig. 6 serve as

a good example of this case.

In case (b) in Fig. 10, Y þ decreases to certain range,

the contribution of the diffusive heat transfer increases

and the ‘‘temperature influence region’’–wall interaction

moves closer to the wire location. The heat transfer from

the cylinder is enhanced in the case of an aluminum wall

ðk�w ¼ 9186Þ owing to the increasing heat flux into the

solid wall (see the case of Y þ ¼ 3:2 in Fig. 11, left). As a

result, a positive velocity correction, i.e., CU < 1, is re-

quired. In the case of a mirror glass wall ðk�w ¼ 29:6Þ, the
heat flux into the wall is also increased. However, the

heat flux fed back into the fluid in the upstream direction

from the solid wall is strong in this case (see the case of

Y þ ¼ 3:2 in Fig. 11, right), which warms up the on-

coming fluid which flows over the region of interest of

the wire. As a final result, the ‘‘reducing effect’’ becomes

dominant over the ‘‘enhancing effect’’, hence a negative

velocity correction, i.e., CU > 1 (region (b) of Fig. 9) is

required. For an easier understanding, the field tem-

perature distribution is provided in Fig. 12.

If Y þ decreases further (see case (c) in Fig. 10), the

‘‘temperature influence region’’–wall interaction occurs

in the proximity of the wire location. Large heat fluxes

are transferred into the solid wall owing to the much

higher conductivities of the wall materials compared

with that of the fluid (see the case of Y þ ¼ 0:63 in Fig.

11), hence the enhancing effect becomes dominant over

the reducing effect arising from the heat feedback.

Therefore, the heat loss from the wire is significantly

enhanced and positive velocity corrections are observed

also for poorly conducting materials (CU < 1, region (c)

of Fig. 9). For an example of the temperature isolines,

see Fig. 5.

5. Conclusions

Accurate numerical simulations were carried out to

study the influence of the thermal conductivity of the

wall material on the heat transfer characteristics of a

cylinder in wall-bounded shear flow. The conjugated

heat transfer in the solid wall was taken into account.

The effects of the influencing parameters such as the

thermal conductivity of the wall material, the cylinder–

wall distance, the cylinder Reynolds number and the

shear parameter on the local heat transfer rate of a

cylinder were analyzed in detail. The coupling process of

the heat transfer between the flow region and the solid

wall was also analyzed. The present investigation has

direct implications for hot-wire near-wall measurements.

A better understanding of the physical problem is

reached. Based on the present numerical results, the

following conclusions can be drawn.

The heat conduction in the solid wall has a significant

effect on the heat transfer from a cylinder in a wall-

bounded shear flow. The influence range (cylinder–wall

Fig. 12. Temperature isolines (�C) around the cylinder and in the wall at Y þ ¼ 3:2 resulting from ReD ¼ 0:1, Y =D ¼ 100. Case (a), an

aluminum wall, k�w ¼ 9186 (left). Case (b), a mirror glass wall, k�w ¼ 29:6 (right).
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distance) of the wall effect and the intensity at a given

distance depend quantitatively on the thermal conduc-

tivity of the wall material, especially in cases of poorly

conducting walls. When Y þ > 5, the wall effect become

negligible for all wall materials.

A ‘‘elliptically’’ shaped local Nusselt number

Nuðx=DÞ distribution was found on the cylinder surface

in a shear flow. Beyond the wall influence range, the

average Nusselt number and the gradient of the long-

axis of the ellipse are principally determined by the

cylinder Reynolds number ReD. The shear effect on the

average Nusselt number and the gradient is negligible,

but the local distribution of the Nusselt number Nuðx=DÞ
is characterized by the shear parameter G�

2.

Strong heat feedback was found from poorly con-

ducting walls (e.g., mirror glass, k�w ¼ 29:6) into the

fluid. That can reduce the heat loss rate of the cylinder

when it is located at a certain range of distance Y þ from

a poorly conducting wall. As a result, negative velocity

corrections ðCU > 1Þ are required for hot-wire near-wall

measurements in such cases. The heat feedback from the

highly conductive aluminum wall ðk�w ¼ 9186Þ was very
weak in the total range of the cylinder-wall distance Y þ.

The present analysis of the interaction between the

‘‘temperature influence region’’ of a hot-wire and the

solid wall and the heat exchange between the fluid and

the solid wall has improved the understanding of the

physical mechanism for the hot-wire near-wall correc-

tion in the cases of different wall materials and under

different flow conditions.
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